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Abstract
The Arctic has experienced dramatic climate changes, characterized by rapid surface warming and
sea-ice loss over the past four decades, with broad implications for climate variability over remote
regions. Some studies report that Arctic warming may simultaneously induce a widespread cooling
over Eurasia and frequent cold events over North America, especially during boreal winter. In
contrast, other studies suggest a seesaw pattern of extreme temperature events with cold weather
over East Asia accompanied by warm weather in North America on sub-seasonal time scales. It is
unclear whether a systematic linkage in surface air temperature (SAT) exists between the two
continents, let alone their interaction with Arctic sea ice. Here, we reveal a dipole pattern of SAT in
boreal winter featuring a cooling (warming) in the Eurasian continent accompanied by a warming
(cooling) in the North American continent, which is induced by an anomalous Barents–Kara
sea-ice decline (increase). The dipole operates on interannual and multidecadal time scales. We
find that an anomalous sea-ice loss over the Barents–Kara Seas triggers a wavenumber one
atmospheric circulation pattern over the high-latitude Northern Hemisphere, with an anomalous
high-pressure center over Siberia and an anomalous low-pressure center over high-latitude North
America. The circulation adjustment generates the dipole temperature pattern through thermal
advection. Our finding has important implications for Northern Hemisphere climate variability,
extreme weather events, and their prediction and projection.

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ac9ecd
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ac9ecd&domain=pdf&date_stamp=2022-11-11
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3557-1853
https://orcid.org/0000-0003-2891-3883
https://orcid.org/0000-0002-6425-7855
https://orcid.org/0000-0003-4558-9755
https://orcid.org/0000-0001-6325-6626
mailto:lixichen@mail.iap.ac.cn
http://doi.org/10.1088/1748-9326/ac9ecd


Environ. Res. Lett. 17 (2022) 114047 Y Hou et al

1. Introduction

Since the 1970s, climate change over the Northern
Hemisphere high latitudes has intensified compared
to those of the global mean, as a result of a pro-
cess known as Arctic amplification [1, 2]. The most
significant changes occurred in boreal autumn and
winter [3], characterized by a rapid surface air tem-
perature (SAT) increase, more than twice as fast
as the global warming rate [2], accompanied by a
continuous sea-ice retreat [4–7]. These rapid Arctic
changes have been associated with a series of physical
processes [8, 9], including the local anthropogenic
greenhouse gas forcing [10, 11], the lapse rate and
Planck feedbacks [12, 13] in the atmosphere, as well as
the cloud feedbacks [14, 15], the ice albedo-feedback
[16], and tropical-polar teleconnections [17]. In par-
ticular, the ocean-atmosphere heat exchange induced
by the recent Arctic sea-ice loss [18] and the heat
and moisture transport between the Arctic and lower
latitudes [19, 20] play a crucial role in heating the
North Pole region, especially during boreal winter
when the shortwave radiative forcing is absent over
the Arctic region.

Arctic Amplification has a broad implication on
climate changes and variability over the mid- and
high-latitude Northern Hemisphere, especially over
the continental areas [21–23]. The warmArctic, asso-
ciated with the sea ice melt, and the rapid increase
of Eurasian snow cover [24–26] in boreal autumn
and winter, are often followed by a decrease in SAT
over the mid-latitude Eurasian continent [27, 28],
and sometimes over the mid-latitude North Amer-
ican continent [29] in boreal winter. This pattern
has been termed the ‘warm Arctic—cold contin-
ent’ pattern which includes cooling in eastern North
America [24, 26]. Hypotheses proposed to explain
mechanisms associated with this pattern include:
stratospheric–tropospheric coupling induced by an
enhanced upward propagation of planetary-scale
waves with wavenumbers of one and two [30, 31], a
weakening of the Arctic Oscillation [32], a persist-
ent shift of Arctic polar vortex towards the Eurasian
continent [33], and more frequent Eurasian blocking
events associated with an intensified Siberian High
[34, 35]. These mechanisms are in part triggered by
the Arctic sea-ice retreat, especially over the Barents–
Kara Seas (BKS) region.

Several recent studies questioned the significance
level of the impacts of the Arctic sea-ice loss on
the Northern Hemisphere mid-latitude climate in
boreal winter [7, 36–38]. Large discrepancies exist
between the observations and numerical simulations,
as well as among the experiments results using dif-
ferent numerical models [7]. Some modeling stud-
ies based on large ensembles [39–43] indicated that
the observed cold anomaly over the Eurasian con-
tinent may be more attributed to the atmospheric
internal variability and the forcing from the tropics,

rather than driven by the Arctic sea-ice loss. Other
studies indicated that the atmospheric response to the
Arctic sea-ice loss may be underestimated in climate
models [44, 45] in comparison to that in the observa-
tions. In addition, the linkage between the Arctic and
the mid-latitudes is weakening according to a recent
study [46].

The sea-ice loss and the circulation changes over
different sectors of the Arctic Ocean may have dis-
tinct impacts on mid-latitude North America [47].
The surface warming and the sea-ice loss over the
Chukchi–Bering Seas usually drive an anomalous
cooling over North America [29]. In addition, the
weakening of stratospheric polar vortex [48–50] asso-
ciated with the Arctic sea-ice loss can cause the
increase of the extreme cold events over North
America [51, 52], other studies [53, 54] revealed a
seesaw pattern of extreme temperature events on sub-
seasonal time scales, with a cold event over East Asia
accompanied by awarm event inNorthAmerica, usu-
ally lasting for several weeks [54]. Despite the weak
cooling temperature trend in February, there has been
a warming trend in wintertime monthly-mean SAT
over North America during the past decades [55, 56],
which contravenes the hypothesis that a warm Arctic
is associated with a cold North America.

This study reveals a ‘cold Eurasia-warm North
America’ SAT dipole pattern between the mid-
latitude Eurasian continent and much of North
America in boreal winter (December–January–
February, DJF), active on interannual and mul-
tidecadal time scales triggered by BKS sea-ice
variability. In particular, the BKS sea-ice loss, while
cooling the Eurasian continent, instead heats the
North American continent through atmospheric
circulation adjustment and its associated thermal
advection.

2. Materials andmethods

2.1. Data analysis
The UK Met Office Hadley Centre’s sea surface tem-
perature (SST) and sea-ice datasets [57] have been
used in this study to estimate variability and trends
of the Arctic sea ice concentration (SIC) and SST. Sea
level pressure (SLP) and SAT from the three reana-
lysis datasets are also used. To estimate the contin-
ental dipole pattern and its relationship with the
anomalous Arctic sea ice and atmospheric circulation
over Northern Hemisphere in boreal winter (DJF),
we use (a) the Modern Era Retrospective-Analysis
for Research and Applications, version 2 (MERRA2)
[58]; (b) the European Centre for Medium-Range
Weather Forecasts Reanalysis version 5 (ERA5) [59];
and (c) the Japanese 55 year Reanalysis (JRA55) [60].
To estimate the multidecadal trend of the SAT, we use
a two-meter air temperature (T2m) of 10 252 land-
based weather stations from the National Center for
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Environmental Information, National Oceanic and
Atmospheric Administration [61].

2.2. Statistical methods
Sen’s slope method [62] is used to calculate the
observed trends in SAT and the Arctic SIC, with
the confidence intervals estimated using the Mann-
Kendall test [62].

We use the linear regression coefficients to eval-
uate the relationship between the temperature, the
atmospheric circulation, and the sea ice. We use the
Student’s t-test to calculate the confidence intervals
of these coefficients.

We use empirical orthogonal function (EOF) [63]
to obtain the leading modes of SAT over the North-
ern Hemispheric mid-latitude continents, focusing
on boreal winter (DJF). The EOF decomposition is
applied based on both trend-retained and detrended
reanalysis datasets. The results of these two types of
decomposition are identical in this study.

A maximized covariance analysis (MCA) method
[64] is used to retrieve the most important coherent
modes between Arctic sea ice and SAT over North-
ern Hemispheric continents to determine the link-
age between these two variables. The leading modes
of MCA maximize the covariance between two high-
dimensional datasets through a singular value decom-
position of the covariance matrix between these two
variables. This method gives the most important
modes that dominate the variability of each time
series, and shows a strong correlation with each other.

We use a dynamical adjustment (DA) method
[65] to isolate anomalous atmospheric circulation
modes associated with the evolution of the area-
averaged SAT over mid-latitude Eurasia and North
America. This method, based on partial least-squares
regression and spatial pattern correlation, separ-
ates the SAT component associated with atmo-
spheric circulation. Based on the above two proced-
ures, SLP modes that significantly contribute to the
area-averaged SAT time series are obtained. Cross-
validationwith a bootstrapmethod is used to evaluate
whether the contribution of these modes is statistic-
ally significant.

2.3. Model simulation
The NCAR climate model, the Community Atmo-
sphere Model version 5 (CAM5), is used to investig-
ate the teleconnection between the Arctic sea-ice and
the continental SAT and SLP. We employ the finite-
volume dynamical core with a global horizontal resol-
ution of about 2◦ (F19). TheCommunity LandModel
and the Community Sea-Ice Model thermodynamic
module provide the heat and moisture fluxes on the
lower boundary. A transient experiment with CAM5
forced by observed time-varying (with trend) SST
and sea ice (i.e. AMIP-like) is performed for the 1979–
2019 period, with 20 ensemble members accompan-
ied by different perturbed initial conditions. The

experiment is forced by the SST and sea ice variab-
ility over the BKS region (0◦–80◦ E, 65◦ N–80◦ N).
The SST and SIC over other areas are set to the cli-
matological mean states (1981–2010) with the annual
cycle, while other forcings, including the concentra-
tion of greenhouse gases, the aerosols, and the solar
radiation, are all set to fixed values during the entire
integration period. The linear trend of the ensemble
mean state from1980 to 2019 is calculated, which rep-
resents the impact of the SST and sea ice over the BKS
region on the changes of the Northern Hemispheric
SAT and SLP.

3. Results

3.1. Dipole pattern on interannual time scales
We identify leading modes of interannual SAT vari-
ability of boreal winter (DJF) from 1980 to 2019 by
performing an EOF decomposition (see section 2.2)
over the entire continental area of the mid-latitude
Northern Hemisphere (20◦ N–70◦ N) with three
state-of-the-art reanalysis datasets, the MERRA2 (see
supplementary figures 1(a) and (b)), the ERA5 (see
supplementary figures 1(c) and (d)), and the JRA55
(see supplementary figures 1(e) and (f)). The res-
ults among different datasets are identical. The first
EOF mode (see supplementary figures 1(a), (c) and
(e)) shows a coherent warming pattern over almost
the entire Eurasian and North American continents,
except the areas around Hudson Bay and Green-
land. This mid-latitude warming pattern is tightly
associated with the anthropogenic global warming
trend. Mode two (see supplementary figures 1(b),
(d) and (f)) shows a dipole pattern between Eurasia
and North America, with anomalous cooling over the
Eurasian continent and a broadwarming pattern over
North America. The Eurasian cooling—North Amer-
ican warming pattern should be reversed when the
principle component (PC) is negative. Mode one and
two explain about 24% and 15% of the total variab-
ility, respectively. We also perform an EOF analysis
with a linear trend removed before the decomposi-
tion, and the resulting patterns are identical (see sup-
plementary figure 2).

To further investigate the potential linkage
between the Arctic sea ice and the land-area SAT
over the mid-latitude Northern Hemisphere, we con-
duct a Maximum Covariance Analysis (MCA) (see
section 2.2) between these two variables in DJF. The
spatial pattern of the SIC (figure 1(a)) of the lead-
ing MCA mode is characterized by sea-ice retreat
over the BKS and the Greenland Sea. The spatial pat-
tern of the SAT (figure 1(b)) resembles the second
EOF mode of the SAT (see supplementary figure
1(b)), with a broad cooling pattern over mid-latitude
Eurasia and continental-wide warming over entire
North America, despite a cooling signal around the
west coast of the United States. This SAT dipole pat-
tern between the Eurasian and the North American
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Figure 1.Observed evidence of a boreal winter dipole of cold Eurasia—warm North America. (a) and (b) show the first mode of a
maximized covariance analysis (MCA) between the boreal winter (DJF) Arctic sea ice concentration (SIC, (a)) and the
mid-latitude Northern Hemispheric land-area surface air temperature (SAT, (b)). (c) and (d) show observed DJF trends of the
Arctic SIC ((c), % (40 yr)−1) and the mid-latitude SAT ((d), K (40 yr)−1) during the 1980–2019 period. Stippling indicates areas
with a statistical significance level of <5% based on a Mann-Kendall test. The similarity between the MCA and linear trends of the
SIC and SAT implies a robust, coherent SAT dipole pattern associated with the Barents–Kara SIC anomalies on interannual and
multidecadal time scales.

continents may be reversed when the sea ice increases
over the BKS. To confirm the relationship revealed by
the decomposition, we also perform an MCA using
detrended SIC and SAT (see supplementary figure 4).
The second mode (see supplementary figures 4(c)
and (d)) resembles the linkage between the BKS
sea-ice retreat and the continental SAT dipole pat-
tern. Using other reanalysis datasets produces nearly
identical MCA results (see supplementary figure 6).

The EOF decomposition reveals a SAT dipole pat-
tern between the Eurasian and North American con-
tinents, while the MCA links it to the variability
of the Arctic SIC, especially that over the BKS and
Greenland Sea. We then regress the SAT (figure 2(a))
onto the area-averaged BKS (20◦ E–80◦ E, 70◦ N–
80◦ N) SIC time series (black curve in supplementary
figure 3). The results are similar to the dipole-like SAT
pattern (figure 1(b)) in the firstMCAmode, confirm-
ing that this SAT dipole pattern is related to the BKS
sea-ice variability.

Considering that the adjustment of the atmo-
spheric circulation may play an important role in
mediating these kinds of remote effects [66–68], we
further regress the Northern Hemisphere SLP and

the 500 hPa geopotential height (figure 2(b)) onto
the area-weighted mean BKS SIC time series (black
curve in supplementary figure 3). The result shows
a wavenumber one pattern over the high-latitude
Northern Hemisphere, with a high-pressure center
over north Siberia, and a low-pressure center over
the high-latitude North America. Further analysis
(see supplementary figure 9) indicates that the large-
scale circulation anomalies related to the BKS sea-ice
retreat may intensify the cold advection over cent-
ral Eurasia, meanwhile driving an anomalous warm
advection to mid-latitude North America, contribut-
ing to the SAT dipole pattern between the two contin-
ents in boreal winter.

With a combination of statistical analyses, includ-
ing EOF, MCA, and linear regression, we reveal
that the Arctic sea-ice variability, especially over
the BKS, may contribute to this SAT dipole pat-
tern through modulating the atmospheric circu-
lation over the mid- and high-latitude North-
ern Hemisphere. This phenomenon operates on
interannual time scales. Below, we show that such
a diploe pattern operates on multidecadal time
scales.
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Figure 2. Surface air temperature and atmospheric
circulation responses to the Barents–Kara sea-ice loss in
boreal winter. (a) Pattern of linear regression coefficient of
the mid-latitude Northern Hemispheric surface air
temperature against standardized time series of the sea ice
concentration (SIC) over the Barents–Kara Seas in boreal
winter (DJF). (b) Patterns of regression coefficients of the
sea level pressure (shaded), the 500 hPa geopotential height
(contours at 6 m intervals), and the horizontal component
of the Plumb flux at 500 hPa (vectors) against the
standardized time series of the DJF Barents–Kara SIC.
Stippling indicates areas with a statistical significance level
of <5% based on Student’s t-test.

3.2. Dipole pattern in multidecadal trend
We calculate the DJF SIC and SAT trends from
1980 to 2019. As revealed by many previous studies
[7, 69–71], the wintertime Arctic sea ice experienced
a rapid retreat over the BKS, and part of the Nordic—
Greenland Seas (figure 1(c)), mainly due to the warm
surface water intrusion associated with the shift of
the Gulf stream extension [72, 73]. Central Eurasia
experienced a cooling trend [28, 45, 74, 75]. In con-
trast, North America experienced a broad warming
trend in boreal winter [55, 56, 76] (figure 1(d), based
on the MERRA2 reanalysis), despite a spot of mild
cooling over the RockyMountain area.We also calcu-
late themid-latitudeNorthernHemisphere SAT trend
using other reanalysis datasets (ERA5 and JRA55)
and in-situ observations (see supplementary figure 8).
Results show a similar dipole pattern, with a cooling
signal over central Eurasia and a broad warming pat-
tern over mid-latitude North America. However, the
intensity of the temperature trends among these data-
sets varies.

To evaluate the potential trigger of these opposite
SAT trends between the two continents, we perform
a DA analysis (see section 2.2) to the area-weighted
mean DJF SAT time series over the central Eurasian

continent (40◦ N–65◦ N, 50◦ E–110◦ E, blue box
in figure 1(d)) and the North American contin-
ent (40◦ N–65◦ N, 60◦ W–130◦ W, red box in
figure 1(d)), respectively. The DA technique isolates
the effects of dynamical processes on the SAT trends.
The dynamical component is determined through
the identification of atmospheric circulation patterns
(e.g. anomalous high-/low-SLP centers) that impact
the SAT through thermal advection [65].

Figures 3(a) and (b) show the anomalous SLP
patterns, which significantly contribute to the recent
observed SAT trends over central Eurasia (figure 3(a))
and North America (figure 3(b)), respectively
through the DA. Our results indicate that both the
negative SAT trend over central Eurasia and the pos-
itive SAT trend over North America can be at least
partially attributed to a similar atmospheric circu-
lation pattern (figures 3(a) and (b)). This pattern is
characterized by a strong high-pressure center over
north Siberia, and a relatively weaker low-pressure
center over northern Canada and Hudson Bay. It
constitutes a wavenumber one pattern over the north-
ern high latitudes along with a high-pressure center
over the North Pacific. The thermal advection asso-
ciated with the high- and low-pressure centers helps
advect cold andwarm air to central Eurasia andNorth
America, respectively, forming a SAT dipole pattern
between these two continents in boreal winter.

According to the DA, the dipole-like SAT trend
between the Eurasian andNorthAmerican continents
may be associated with a wavenumber one circulation
pattern over the high-latitude Northern Hemisphere
(figure 3). This pattern resembles the anomalous cir-
culation pattern related to the BKS sea-ice retreat
(figure 2(b)). This similarity implies that the BKS sea-
ice loss may impact the Northern Hemispheric land-
area SAT trend through an adjustment of the atmo-
spheric circulation. Additional evidence is needed to
validate the causality and to clarify themechanisms of
these linkages, which we provide below with numer-
ical model experiment.

3.3. Causality andmechanism
We conduct an ensemble simulation experiment
using the NCAR climate model, the Community
Atmosphere Model version 5 (CAM5), driven by the
observed evolution of the SST and SIC over the BKS
region from 1980 to 2019 (see section 2.3). The sim-
ulation results provide the atmospheric temperature
and circulation responses to the forcings from the
Arctic (figure 4). The simulated SAT trend shows a
similar dipole-like pattern, with cooling signals over
central Eurasia and a broad, significant warming pat-
tern over North America (figure 4(a)). However, the
cooling signal is not strong in all regions. The high-
latitude Eurasian continent is dominated by a strong
warming, which agrees well with our MCA results.
The impact of the Arctic sea ice on the Eurasian
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Figure 3. Atmospheric circulation associated with dipole pattern of mid-latitude surface air temperature. (a) Sea level pressure
(SLP) pattern associated with the time series of the area-weighted mean surface air temperature (SAT) over central Eurasia (blue
box in figure 1(d)) in boreal winter (DJF), retrieved by a dynamical adjustment (DA) analysis. (b) Same as (a), but for the SLP
pattern associated with the area-averaged SAT time series over North America (NA, red box in figure 1(d)) based on the DA. A DA
procedure separates the dynamical (associated with atmospheric circulation) and thermodynamical components from the SAT
trend (see section 2.2).

cooling trend has been intensely investigated [27–29].
The robustness of this effect has been questioned
[39–41, 45, 77, 78], as debate surrounding the uncer-
tainties of the simulation results continues. Previ-
ous studies [28, 79, 80] indicated that simulating the
impact of Arctic sea ice on the Eurasia cooling may
need a large sample size due to the low signal-to-noise
ratio. Remarkably, the relationship between the BKS
sea-ice loss and the heating over North America, as
revealed in this study, is significant in both the stat-
istical analysis (figure 2(a)) and numerical simulation
(figure 4), presenting a robust linkage between these
processes.

The DA and linear regression analysis imply that
the linkage between the Arctic sea-ice retreat and
the SAT dipole pattern is likely mediated by atmo-
spheric dynamics, mainly through a zonal wavenum-
ber one mode over the northern high latitudes. A
high-pressure center characterizes the circulation pat-
tern over Siberia and a low-pressure center overNorth
America, along with a high-pressure center over the
mid-latitude North Pacific (figures 2(b) and 3), des-
pite a slight deviation of the intensity among different
high- and low-pressure centers. We further analyze
the simulation results (figure 4(b)) to elucidate the
circulation response to the BKS sea-ice retreat. The
SLP response to the BKS SST/SIC (figure 4(b)) for-
cings reproduce a high-pressure center over Siberia
and a low-pressure center over North America. How-
ever, the former is stronger in the simulation res-
ults than in the statistical analyses (figures 3 and 4).
It extends to the east coast of the Eurasian contin-
ent and merges with a high-pressure center over the

Figure 4. Simulated response to the observed Arctic SST
and SIC. (a) The wintertime (DJF) SAT response
(K (40 yr)−1) to the SST and SIC variability over the
Barents–Kara Seas (BKS) region during the
1980–2019 period. (b) The wintertime SLP response
(hPa (40 yr)−1) to SST and SIC variability over the BKS
region during the 1980–2019 period. Stippling indicates
areas with a statistical significance level of <5% based
on a Mann-Kendall test.

North Pacific. The low-pressure center in the simula-
tion results is relatively weaker than that in the stat-
istical analyses.
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Figure 5. Schematic diagram of the mechanism for the Cold Eurasia—Warm North America pattern triggered by the sea-ice
retreat over the Barents–Kara Seas in boreal winter. The sea-ice retreat over the Barents–Kara Seas heats the surface atmosphere
and triggers an anomalous high-pressure center over northern Siberia, propagating to the east through stationary Rossby wave
dynamics (with wavenumber one), forming an anomalous low-pressure center over high-latitude North America. The anomalous
high-pressure center drives an anomalous cold atmospheric advection from the Arctic to central Eurasia. In contrast, the
anomalous low-pressure center drives an anomalous warm advection to the central-east North American continent.

These circulation patterns in both statistical ana-
lyses and the numerical experiment are signific-
ant almost everywhere, which reemphasizes the role
of the circulation patterns in mediating the Arctic
sea-ice variability and the continental SAT dipole pat-
tern. Recent studies indicated that the BKS sea-ice
retreat might shift the stratospheric polar vortex to
the Eurasian continents [33]. The BKS sea-ice retreat
may also intensify the Siberian high or Ural block-
ing by heating the atmosphere, expanding the geo-
potential heights, and weakening the westerly wind
[28, 35, 81]. This signal may propagate to the east
through a stationary Rossby wave train, contribut-
ing to the formation of the low-pressure center over
North America.

To examine the Rossby wave dynamics, we estim-
ate the horizontal component of Plumb flux [82] at
500 hPa (vectors in figure 2(b)), which represents the
direction and the intensity of the propagation of a
Rossbywave train. Results show a clear wave flux from
the SiberianHigh to the anomalous low-pressure cen-
ter over North America, forming a wave number one
pattern of the mid- to high-latitude Northern Hemi-
sphere (figure 2(b)), agreeing well with our simula-
tion results (figure 4(b)).

4. Conclusion and discussion

We reveal a continental dipole pattern of the SAT in
boreal winter, with opposite temperature signals over
central Eurasia andNorth America, operating in both
the interannual variability and multidecadal trend
of wintertime land-area SAT over the mid-latitude
Northern Hemisphere. This pattern is seen in the

EOF decomposition of both the trend-retained and
detrended land-area SAT time series over the mid-
latitude Northern Hemisphere. This dipole pattern in
MCA and linear regression is linked to an Arctic sea-
ice retreat, especially over the BKS region. We show
that the BKS sea-ice retreat drives a wavenumber
one atmospheric circulation pattern over the high-
latitude Northern Hemisphere (figure 5). The cir-
culation anomalies further advect cold and warm
air to the Eurasian and North American continents
(see supplementary figure 9) respectively, forming the
SAT dipole pattern in boreal winter.

Our results indicate that the BKS sea-ice loss may
contribute to the cooling over Eurasia during winter,
agreeing well with previous studies [27, 28, 74]. On
the other hand, we clarify that the BKS sea-ice loss
also intensifies the warming trend over North Amer-
ica, although the impact of Arctic sea ice in dif-
ferent regions is different [47]. Recent studies show
robust evidence [50, 52, 83] that the Arctic sea-ice
variability may drive extreme cold events over both
Asia and North America through stratospheric polar
vortex disruption. Additional investigation is needed
to determine to what extent Arctic sea-ice retreat-
induced mean warming over North America is offset
by the more frequent cold extreme events.

Eurasia and North America are two heavily pop-
ulated continents. The dipole pattern we find may
also influence the precipitation and air pollution
with broad societal implications, including economic
and public health consequences in these regions.
The pattern potentially contributes to climate pre-
dictability on interannual and multidecadal time
scales.
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